List of papers relating to the CH/π hydrogen bond

The author appreciates receiving information relating to this subject

Previous Category > Category list > Next Category

Category: THEORY; MOLECULAR ORBITAL CALCULATION

[NEW] K. Fukuzawa, T. Takagi, C. Watanabe et al, J. Phys. Chem. Lett. 2021, 12, 4059−4066: Intermolecular Interaction Analyses on SARS-CoV‐2 Spike Protein Receptor Binding Domain and Human Angiotensin-Converting Enzyme 2 Receptor-Blocking Antibody/Peptide Using Fragment Molecular Orbital Calculation.

[NEW] E. Kanao, T. Kubo et al., Anal. Chem. 2020, 92, 4065-4072: Tunable Liquid Chromatographic Separation of H/D Isotopologues Enabled by Aromatic π Interactions.

P. Kuś et al., J. Chem. Crystallography 2018 https://doi.org/10.1007/s10870-018-0752-0: Aromatic C–H…π, C–H…O and parallel aromatic–aromatic interactions in the crystal structure of meso-tetrakis[4-(benzyloxy)phenyl] porphyrin.

B. K. Mishra, R. Venkatnarayan, Theor. Chem. Acc 2018, 137, DOI: 10.1007/s00214-018-2249-5: Substituents’ influence on the C–H···π interaction in the T-shaped benzene dimer.

B. J. Levandowski, K. N. Houk, J. Am. Chem. Soc. 2016, 138, 16731–16736: Hyperconjugative, Secondary Orbital, Electrostatic, and Steric Effects on the Reactivities and Endo and Exo Stereoselectivities of Cyclopropene Diels–Alder Reactions.

Z. D. Parsons et al., J. Am. Chem. Soc. 2016, 138, DOI: 10.1021/jacs.6b07399: A Catalytic Role for C-H/pi Interactions in Base Excision Repair by Bacillus cereus DNA Glycosylase AlkD.

S. K, Seth, J. Molec. Struct. 2015, 1084, 223-228: Performances of DFT methods implemented in G09 for simulations of the dispersion-dominated CH-π in ligand–protein complex: A case study with glycerol-GDH.

E. H. Krenske, K. N. Houk, M. Harmata, J. Org. Chem. 2014, 80: Computational Analysis of the Stereochemical Outcome in the Imidazolidinone-Catalyzed Enantioselective (4 + 3)-Cycloaddition Reaction.

S. K. Seth, J. Molec. Struct. 2014, 1070, 65-74: Exploration of supramolecular layer and bi-layer architecture in M(II)–PPP complexes: Structural elucidation and Hirshfeld surface analysis [PPP = 4-(3-Phenylpropyl)pyridine, M = Cu(II), Ni(II)].

B. K. Mishra et al., J. Org. Chem., 2014, 79, 8599–8606: C–H···π Interactions and the Nature of the Donor Carbon Atom.

M. Kobayashi et al., Chem. Lett. 2014, 43, 432-434: Highly Coplanar (E)-1,2-Di(1-naphthyl)disilene Involving a Distinct CH–π Interaction with the Perpendicularly Oriented Protecting Eind Group.

T. H. Vu et al., J. Phys. Chem. A 2014, 118, DOI: 10.1021/jp501698j: Formation of a New Benzene-Ethane Co-Crystalline Structure Under Cryogenic Conditions

S. Scheiner, J. Org. Chem. 2014, 79, 8599–8606: Effect of Ionic Charge on the CH···π Hydrogen Bond: B. Nepal.

A. Bauzá et al., Chem. Commun. 2014, 50, 12626-12629: Non-covalent sp3 carbon bonding with ArCF3 is analogous to CH–π interactions.

R. Shishido et al., J. Phys. Chem. A, Article ASAP, 2014 DOI: 10.1021/jp4115157: Infrared Spectroscopy of Protonated Trimethylamine–(Benzene)n (n = 1–4) as Model Clusters of the Quaternary Ammonium–Aromatic Ring Interaction.

S. E. Wheeler, J. W. G. Bloom, J. Phys. Chem. A, Article ASAP, 2014, DOI: 10.1021/jp504415p: Toward a More Complete Understanding of Noncovalent Interactions Involving Aromatic Rings (review).

N. A. Seifer et al., Angew. Chem. Int. Ed. 2014, 53, 3210–3213: Probing the CH/π Weak Hydrogen Bond in Anesthetic Binding: The Sevoflurane–Benzene Cluster.

M. Albertí et al., J. Phys. Chem. A 2014, 118, 1651–1662: Benzene–Hydrogen Bond (C6H6–HX) Interactions: The Influence of the X Nature on their Strength and Anisotropy.

C. Zhao et al., Org. Lett. 2014, 16, 3520–3523: Experimental Study of the Cooperativity of CH−π Interactions.

P. Giacinto et al., J. Phys. Chem. C 2014, 118, 5032−5040: Cl(−|) Exchange SN2 Reaction inside Carbon Nanotubes: C−H···π and Cl···π Interactions Govern the Course of the Reaction.

O. Gou et al., Phys. Chem. Chem. Phys., 2014, 16, 13041-13046: Interactions between alkanes and aromatic molecules: a rotational study of pyridine–methane.

F. H. Allen et al., Acta Crystallogr. B Struct Sci. Cryst. Eng. Mater. 2013: 281-287. doi: 10.1107/S2052519213008208: The versatile role of the ethynyl group in crystal packing: an interaction propensity study.

S. Hayashi et al., J. Phys. Chem. A 2013, 117, 1804−|1816: Dynamic Behavior of Hydrogen Bonds from Pure Closed Shell to Shared Shell Interaction Regions Elucidated by AIM Dual Functional Analysis.

C. S. Karthikeyan et al., J. Phys. Chem. A 2013, 117, 6687–6694: Influence of the Substituents on the CH...π Interaction: Benzene–Methane Complex.

A. Horme et al., J. Phys. Chem. A, 2013, 117, 2007-2019, doi.org/10.1021/jp3121897: Conformations and CH/pi Interactions in Aliphatic Alkynes and Alkenes.

C. Zhao et al., J. Am. Chem. Soc. 2012, 134, 14306–14309: Do Deuteriums Form Stronger CH−π Interactions?

S. Higashibayashi et al, Bull. Chem. Soc. Jpn. 2012, 85, 450-467: Trimethylsumanene: Enantioselective Synthesis, Substituent Effect on Bowl Structure, Inversion Energy, and Electron Conductivity https://doi.org/10.1246/bcsj.20110286

M. Albertí et al., J. Phys. Chem. A 2012, 116, 5480-5490: Competitive Role of CH4–CH4 and CH/π Interactions in C6H6–(CH4)n Aggregates: The Transition from Dimer to Cluster Features.

B. K. Mishra et al., J. Chem. Theory Comput. 2012, DOI: 10.1021/ct300100h: Tuning the CH/pi Interaction by Different Substitutions in Benzene-Acetylene Complexes.

J. W. G. Bloom et al., J. Chem. Theory Comput., 2012, 8, 3167−|3174: Physical Nature of Substituent Effects in XH/π Interactions.

C. Zhao et al., J. Am. Chem. Soc. 2012, 134, 14306-14309: Do Deuteriums Form Stronger CH/pi Interactions?

H. K. Ganguly et al., J. Am. Chem. Soc. 2012, 134, 4661-4669: Direct Evidence for CH/pi Interaction Mediated Stabilization of Pro-cisPro Bond in Peptides with Pro-Pro-Aromatic motifs.

S. E. Allen et al., J. Am. Chem. Soc. 2012, DOI: 10.1021/ja302761d: Oxyanion-steering and CH-pi Interactions as Key Elements in an N-Heterocyclic Carbene-Catalyzed [4+2] Cycloaddition.

A. Fujii et al., Chem. Phys. Lett. 2012, 537, 11-15: Preference of the monodentate contact in the CH/pi interaction between an alkyl group and a single phenyl ring: Stable structures of benzene-ethane clusters.

T. Tsukamoto et al., Chem. Phys. Lett. 2012, 535, 157-162: Partial geometry optimization with FMO-MP2 gradient: Apprication to TrpCage.

C. Zhao et al., Cryst. Growth Des. 2012, DOI: 10.1021/cg201211e: CH/pi Interaction Induced Formation of Microtubes with Enhanced Emission.

G. N. Sastry et al., Int. J. Biol. Macromolec. 2011, 19, 540-552: Aromatic-Aromatic Interactions Database, A(2)ID: an analysis of aromatic π-networks in proteins.

L. F. Elmuti et al., Phys. Chem. Chem. Phys. 2011, 13, 1043-14049: Observation of a double C-H···π interaction in the CH2ClF···HCCH weakly bound complex.

J. J. Dom et al, Phys. Chem. Chem. Phys. 2011, 13, 14142-14152: On the weakly C-H···π hydrogen bonded complexes of sevoflurane and benzene.

L. S. Birchall et al., Chem. Sci. 2011, 2, 1349-1355: Exploiting interactions in supramolecular hydrogels of aromatic carbohydrate amphiphiles.

B.-C. Lin et al., Phys. Chem. Chem. Phys. 2011, 13, 20704-20713: The role of CH-pi interaction in the charge transfer properties in tris(8-hydroxyquinolinato)aluminium(III).

D. A. Obenchain et al., J. Phys. Chem. A 2011, 115, 12228-12234: C-H/pi Interactions in the CHBrF2/HCCH Weakly Bound Dimer.

S. Tsuzuki et al., J. Phys. Chem. A 2011, 115, 11256-11262: Magnitude and Nature of Carbohydrate-Aromatic Interactions in Fucose-Phenol and Fucose-Indole Complexes: CCSD(T) Level Interaction Energy Calculations.

M. Kumari et al., Phys. Chem. Chem. Phys. 2011, 13, 6517-6530: Quantification of binding affinities of essential sugars with a tryptophan analogue and the ubiquitous role of CH/pi interactions.

S. J. Grabowski, P. Lipkowski, J. Phys. Chem. A 2011, 115, 4765-4773 Characteristics of X-H/pi Interactions: Ab Initio and QTAIM Studies.

T. Ozawa et al., J. Comput. Chem. 2011, 32, 2774-2781: Importance of CH/pi Hydrogen Bonds in Recognition of the Core Motif in Proline-Recognition Domains: An Ab Initio Fragment Molecular Orbital Study.

S. Kozmon et al., Phys. Chem. Chem. Phys. 2011, 13, 14215-14222: Dispersion interactions of carbohydrates with condensate aromatic moieties: Theoretical study on the CH/π interaction additive properties.

A. Fujii et al., Phys. Chem. Chem. Phys. 2011, 13, 14131-14141: Experimental and theoretical determination of the accurate CH/pi interaction energies in benzene/alkane clusters: correlation between interaction energy and polarizability.

S. Kozmon et al., Chem Eur. J. 2011, 17, 5680-5690: Three-dimensional potential energy surface of selected carbohydrates' CH/pi dispersion interactions calculated by high-level quantum mechanical methods.

M. P. D. Hatfield et al., J. Phys. Chem, B 2011, 114, 3028-3037: The CLN025 Decapeptide Retains a beta-Hairpin Conformation in Urea and Guanidinium Chloride.

E. H. Krenske, K. N. Houk, M. Harmata, Org. Lett. 2010, 12, 444–447: Origin of Stereoselectivity in the (4 + 3) Cycloadditions of Chiral Alkoxy Siloxyallyl Cations with Furan.

R. K. Raju et al., Phys. Chem. Chem. Phys. 2010, 12, 7117-7125: Modelling the binding of HIV-reverse transcriptase and nevirapine: an assessment of quantum mechanical and force field approaches and predictions of the effect of mutations on binding.

A. S. Mahadevi et al., J. Chem. Phys. 2010, 133, 164308: Ab initio investigation of benzene clusters: Molecular tailoring approach.

B. Michielsen et al., Phys. Chem. Chem. Phys. 2010, 12, 14034-14044: The complexes of halothane with benzene: the temperature dependent direction of the complexation shift of the aliphatic C-H stretching.

M. P. D. Hatfield et al., J. Phys. Chem, B 2010, 114, 3028-3037: Molecular Dynamics Analysis of the Conformations of a beta-Hairpin Miniprotein.

B. Michielsen et al., Phys. Chem. Chem. Phys. 2010, 12, 14034-14044: The complexes of halothane with benzene: the temperature dependent direction of the complexation shift of the aliphatic C-H stretching.

C. F. R. A. C. Lima et al., Phys. Chem. Chem. Phys. 2010, 12, 11228-11237: The role of aromatic interactions in the structure and energetics of benzyl ketones.

J. M. Sexton et al., Phys. Chem. Chem. Phys. 2010, 12, 14263-14270: Characterization of CH/pi interactions in the structure of the CHClF2/HCCH weakly bound complex.

S. O. N. Lill, J. Mol. Graph. Model. 2010, 29, 178-187: Evaluation of dispersion-corrected density functional theory (B3LYP-DCP) for compounds of biochemical interest .

H. Suezawa et al., Bull. Chem. Soc. Jpn. 2010, 83, 802-808: CH/pi Interaction on the Structure of N-Substituted-4-phenyltetrahydroisoquinoline Derivatives.

D. Quinonero et al., Dalton Trans. 2010, 39, 794-806: Experimental and computational study of the interplay between CH/π and anion/π interactions.

W. Zierkiewicz, Chem. Phys. 2010, 373, 243-250: Modelling of interactions between volatile anaesthetics (halothane, enfurane) and aromatic compounds, ab initio study.

M. N. A. Mohamed et al., Carbohyd. Res. 2010, 345, 1741-1751: MP2, density functional theory, and molecular mechanical calculations of CH/p and hydrogen bond interactions in a cellulose-binding module-cellulose model system.

M. J. Plevin et al., Nature Chemsitry 2010, 2, 466-471: Direct detection of CH/pi nteractions in proteins.

I.-H. Park, C. Li, J. Molec. Recogn. 2010, 23, 1-12: Characterization of molecular recognition of STAT3 SH2 domain inhibitors through molecular simulation.

J. P. Yesudas et al., J. Mol. Model. 2010, DOI 10.1007/s00894-010-0736-2: Analysis of structural water and CH/pi interactions in HIV-1 protease and PTP1B complexes using a hydrogen bond prediction tool, HBPredicT.

R. M. Kumar et al., J. Phys. Chem. A 2010, 114 , 4313-4324: Carbohydrate-Aromatic Interactions: The Role of Curvature on XH/pi Interactions.

J. Hooper et al., ChemPhysChem 2009, 9, 891 – 895. DOI: 10.1002/cphc.200700715Predicting C-H/π Interactions with Nonlocal Density Functional

R. C. Dey et al., J. Phys. Chem. A. 2009, 113, 10113-10118: CH/pi interaction in benzene and substituted derivatives with halomethane: a combined density functional and dispersion-corrected density functional study.

A. Gil et al., J Phys Chem B. 2009, 113, 4907-4914: An analysis of the different behavior of DNA and RNA through the study of the mutual relationship between stacking and hydrogen bonding.

K. Ramirez-Gualito et al., J. Am. Chem. Soc. 2009, 131, 18129-18138: Enthalpic nature of the CH/pi interaction involved in the recognition of carbohydrates by aromatic compounds, confirmed by a novel interplay of NMR, calorimetry, and theoretical calculations.

S. Maity et al., Phys. Chem. Chem. Phys. 2009, 11, 9738-9743, DOI: 10.1039/b911926d: Infrared-optical double resonance spectroscopic measurements and high level ab initio calculations on a binary complex between phenylacetylene and borane-trimethylamine. Understanding the role of CH/pi interactions.

A. Ebrahimi et al., Chem. Phys. Lett. 2009, 478, 120-126: The role of H/pi interaction on some calculated NMR data.

M. Domagala, S. J. Grabowski, Chem. Phys. 2009, 363, 42-48: XH-pi and XH-N hydrogen bonds: Acetylene and hydrogen cyanide as proton acceptors.

C. Tanjaroon, S. G. Kukolich, J. Phys. Chem. A 2009, 113, 9185-9192: Measurements of the rotational spectra of phenol and 2-pyrone and computational studies of the H-bonded phenol-pyrone dimer.

C. D. Sherrill et al., J. Comput. Chem. 2009, 30, 2187-2193: Assessment of standard force field models against high-quality ab initio potential curves for prototypes of pi/pi, CH/pi, and SH/pi interactions.

R. Carrillo et al., Angew Chem. Int. Ed. 2009, 42, 7803-7808: Quantification of a CH-pi Interaction Responsible for Chiral Discrimination and Evaluation of its Contribution to Enantioselectivity.

R. Chandra et al., J. Phys. Chem. A 2009, 113, 10113-10118: CH/pi Interaction in Benzene and Substituted Derivatives with Halomethane. A Combined Density Functional and Dispersion-Corrected Density Functional Study.

J. J. J. Dom et al., Chem. Phys. Lett. 2009, 469, 85-89: The CH/pi interaction in the halothane/ethene complex: A cryosolution infrared and Raman study.

C. D. Sherrill et al., J. Comput. Chem., 2009, 10.1002/jcc.21226: Assessment of standard force field models against high-quality ab initio potential curves for prototypes of pi-pi, CH/pi, and SH/pi interactions.

O. Takahashi et al., Carbohydr. Res. 2009, 344, 1225-1229: Origin of the generalized anomeric effect: Possibility of the CH/n and CH/pi hydrogen bonds.

Z. Su et al., Chem. Phys. Lett. 2009, 471, 17-21: Carbohydrate/aromatic interactions: A computational and IR spectroscopic investigation of the complex, methyl alpha-l-fucopyranoside/toluene, isolated in the gas phase.

O. Takahashi et al., Tetrahedron 2009, 65, 3525-3528: The conformation of levopimaric acid investigated by high-level ab initio MO calculations. Possibility of the CH/pi hydrogen bond.

O. Takahashi et al., Bull. Chem. Soc. Jpn. 2009, 82, 272-276: The Origin of the Relative Stability of Axial Conformers of Cyclohexane and Cyclohexanone Derivatives: Importance of the CH/n and CH/pi Hydrogen Bonds.

K. Sundararajan, N. Ramanathan. J. Molec. Struc. 2009, 920, 369-376: Acetylene/phenol complexes: A matrix isolation infrared and ab initio study.

S. Maity et al., Phys. Chem. Chem. Phys. 2009, 11, 9738 - 9743, DOI: 10.1039/b911926d: Infrared-optical double resonance spectroscopic measurements and high level ab initio calculations on a binary complex between phenylacetylene and borane-trimethylamine. Understanding the role of CH/pi interactions.

D. Quinonero et al., Theor. Chem. Acc. 2008, 120, 385-393: MP2 Study of synergistic effects between X-H/pi (X = C,N,O) and pi-pi interactions.

C. H. Suresh et al., J. Comput. Chem. 2008, 30, 1392-1404: Typical aromatic noncovalent interactions in proteins: A theoretical study using phenylalanine.

E. Cabaleiro-Lago et al., J. Chem. Phys. 2008, 198, 194311: Study of the interaction in clusters formed by phenol and CH3X (X=CN,F,Cl) molecules.

O. Takahashi et al., Tetrahedron 2008, 64, 5773-5778: Origin of the Axial-Alkyl Preference of (R)-alpha-Phellandrene and Related Compounds Investigated by High-Level Ab Initio MO Calculations. Importance of the CH/pi Hydrogen Bond.

O. Takahashi et al., Tetrahedron 2008, 64, 2433-2400: The Conformation of alkyl cyclohexanones and terpenic ketones. Interpretation for the“Alkylketone Effect”based on the CH/pi(C=O) hydrogen bond.

P. S. P. Silva et al., J. Molec. Struct. 2008, 888, 92-98: Density functional and X-ray diffraction studies of two polymorphs of N,N?,N?-triphenylguanidine.

R. K. Raju et al., Phys Chem Chem Phys. 2008, 10, 6500-6508: Carbohydrate-protein recognition probed by density functional theory and ab initio calculations including dispersive interactions.

A. Fujii et al., Phys. Chem. Chem. Phys. 2008, 10, 2836 - 2843: Experimental and theoretical determination of the accurate interaction energies in benzene/halomethane: the unique nature of the activated CH/pi interaction of haloalkanes.

C. D. Anderson et al., Org. Lett. 2008, 10, 2749-2752: Origin of Enantioselection in Hetero-Diels-Alder Reactions Catalyzed by Naphthyl-TADDOL.

T. Ozawa, K. Okazaki, J. Comput. Chem. 2008, 29, 2656-2666, DOI 10.1002/jcc.20998: CH/pi hydrogen bonds determine the selectivity of the Src homology 2 domeain to tyrosine phosphotyrosyl peptides: An ab initio fragment molecular orbital study.

E. Sanchez-Garcia et al, Chem. Phys. 2008, 343, 168-185: Ab initio and matrix isolation study of the acetylene? furan dimer.

O. Takahashi et al., Tetrahedron 2008, 64, 2433-2440: The Conformation of alkyl cyclohexanones and terpenic ketones. Interpretation for the “Alkylketone Effect” based on the CH/pi(C=O) hydrogen bond.

A. Frontera et al., New J. Chem. 2007, 31, 556-560: MP2 study of cooperative effects between cation/π, anion/π and π/π interactions.

S. J. Grabowski, J. Phys. Chem. A 2007, 111, 3387-3393: Hydrogen Bonds with and Electrons as the Multicenter Proton Acceptors: High Level ab Initio Calculations.

A. Gil et al., J. Phys. Chem. B 2007, 111, 9372-9379: CH/pi interactions in DNA and proteins. A theoretical study.

A. Tekin, G. Jansen, Phys. Chem. Chem. Phys. 2007, 9, 1680-1687: How accurate is the density functional theory combined with symmetry-adapted perturbation theory approach for CH-pi and pi-pi interactions? A comparison to supermolecular calculation for the acetylene-benzene dimer.

S. Chervenkov et al., Phys. Chem. Chem. Phys. 2007, 9, 837-845: Evidence for a C-H/pi type weak interaction: 1:1 complex of styrene with acetylene studied by mass selective high-resolution UV spectroscopy and ab initio calculations.

M. S. Sujatha et al., J. Molec. Struct. THEOCHEM 2007, 814, 11-24: MP2/6-311++G(d,p) study on galactose?aromatic residue analog complexes in different position-orientations of the saccharide relative to aromatic residue.

J. Ran, M.-W. Wong, J. Phys. Chem. A 2006, 110, 9702-9729: Saturated hydrocarbon-benzene complexes: theoretical study of cooperative CH/pi interactions.

K. Sundararajan, K. S. Viswanathan, J. Molec. Struct. 2006, 798, 109-116: A matrix isolation and ab initio study of the C2H2-MeOH complex.

A. Kerzmann et al., J. Chem. Inf. Model. 2006, 46, 1635-1642: SLICK - Scoring and energy functions for protein - Carbohydrate interactions.

A. L. Ringer et al., J. Phys. Chem. A 2006, DOI: 10.1021/jp062740l: Aliphatic CH/pi interactions: Methane-benzene, methane-phenol, and methane-indole complexes.

V. Spiwok et al., J. Computer-Aided Molec. Design 2006, 19, 887-901: Modelling of carbohydrate-aromatic interactions: ab initio energetics and force field performance.

G. Toth, A. Borics, Biochemistry 2006, 45, 6606-6614: Closing of the flaps of HIV-I protease induced by substrate binding: A model of a flap closing mechanism in retroviaral aspartic proteases.

Y. Zhao et al., J. Phys. Chem. B 2005, 109, 19046-19051: How well can Density Functional methods describe hydrogen bonds to pi-acceptors?

M. O. Sinnokrot, C. D. Sherrill, J. Phys. Chem. A 2006, 110, 10656-10668: High-Accuracy Quantum Mechanical Studies of pi-pi Interactions in Benzene Dimers.

K. Shibasaki et al., J. Phys. Chem. A 2006, 110, 4397-4404: Magnitude of the CH/pi interaction in the gas phase: Experimental and theoretical determination of the accurate interaction energy in benzene-methane.

R. Giudic et al., J. Molec. Struct. 2006, 786, 65-67: The rotational spectrum and heavy-atom-planar structure of propargyl benzene (3-phenyl-1-propyne).

R. Parthasarathi et al., J. Phys. Chem. A 2006, 110, 3349-3351: Hydrogen bonding without borders: An atoms-in-molecules perspective.

M. K. Milcic et al., Inorg. Chim. Acta 2006, 359, 4427-4430: CH/pi interactions of pi-system of acetylacetonato chelate ring: Comparison of CH/pi interactions of Ni(II)-acetylacetonato chelate and benzene rings.

A. Pawlukojc et al., Spectrochim. Acta, A 2006, 63, 766-773: Low frequency internal modes of 1,2,4,5-tetramethylbenzene, tetramethylpyrazine and tetramethyl-1,4-benzoquinone: INS, Raman, infrared and theoretical DFT studies.

G. Toth, A. Borics, J. Mol. Graphics, Modelling 2005, in press: Flap opening mechanis of HIV-I protease.

J. Vondrasek et al., J. Am. Chem. Soc. 2005, 127, 2615-2619: Unexpectedly strong energy stabilization inside the hydrophobic core of small protein rubredoxin mediated by aromatic residues; Correlated ab initio quantum chemical calculations.

J. C. Lopez et al., Angew. Chem. Int. Ed. 2005, 45, 290-293: The CH hydrogen bond in the benzene-trifluoromethane adduct: a rotational study.

C. G. Pozzi et al., J. Molec. Struct. 2005, 753, 173-181: Close shell interactions in 3-ethoxycarbonyl-4-hydroxy-6-methoxymethyleneoxy-1-methyl-2-quinolone: 100 K single crystal neutron diffraction study and ab initio calculations.

Y. Kobayashi, K. Saigo, J. Am. Chem. Soc. 2005, 127, 15054-15060: Periodic ab initio approach for the cooperative effect of CH/pi interaction in crystals: Relative energy of CH/pi and hydrogen-bonding interactions.

F. B. Kaynak et al., J. Mol. Struct. 2005, 740, 213-221: New N'-alkylidene/cycloalkylidene derivatives of 5-methyl-3-phenyl-1H-indole-2-carbohydrazide: synthesis, crystal structure, and quantum mechanical calculations.

A. T. Macias, A. D. MacKerell Jr., J. Comput. Chem. 2005, 26, 1452-1463: CH/pi interactions involving aromatic amino acids: Refinement of the CHARMM tryptophan force field.

J. Parada et al., Polyhedron 2005, 24, 1002-1006: Sucrose bis(1,10-phenanthroline) cobalt(III). Comparison of semi-empirical and ab initio geometrical optimizations.

M. S. Sujatha et al., Biochemistry 2005, 44 , 8554 -8562: Insights into the role of the aromatic residue in galactose-binding sites: MP2/6-311G++** study on galactose- and glucose-aromatic residue analogue complexes.

M. Fernandez-Alonso et al., J. Am. Chem. Soc. 2005, 127, 7379-7386: Molecular recognition of saccharides by proteins. Insights on the origin of the carbohydrate-aromatic interactions.

E.-C. Lee et al., J. Am. Chem. Soc. 2005, 127, 4530-4537: Substituent effects on the edge-to-face aromatic interactions.

J. Vondrasek et al., J. Am. Chem. Soc. 2005, 127, 2615-2619: Unexpectedly strong energy stabilization inside the hydrophobic core of small protein rubredoxin mediated by aromatic residues: Correlated ab initio quantum chemical calculations.

L. Orian et al., J. Organomet. Chem. 2005, 690, 482-492: Molecular conformations and pi-hydrogen bonds in anti- and syn-binuclear Rh(I) complexes of as-indacene-diide: a computational study.

G. Drudis-Sole et al., Chem. Eur. J. 2005, 11, 1017-1029: A QM/MM study of the asymmetric dihydroxylation of terminal aliphatic n-alkenes with OsO4(DHQD)2PYDZ: Enantioselectivity as a function of chain length.

P. Munshi, T. N. Guru Row, J. Phys. Chem. A 2005, 109, 659-672: Exploring the lower limit in hydrogen bonds: analysis of weak CH-O and CH-pi interactions in substituted coumarins from charge density analysis.

E. Sanchez-Garcia et al., J. Phys. Chem. A 2004, 108, 11846-11854. 10.1021/jp0485082: 1:2 Formic Acid/Acetylene Complexes: Ab Initio and Matrix Isolation Studies of Weakly Interacting Systems.

V. Spiwok et al., Carbohydr. Res. 2004, 339, 2275-2280: Role of CH/pi interactions in substrate binding by Escherichia coli beta-galactosidase.

T. K. Manojkumar et al., J. Chem. Phys. 2004, 121, 841- 846: p-benzoquinone-benzene clusters as potential nanomechanical devices: A theoretical study.

M. S. Sujatha et al., Protein Sci. 2004, 13, 2502-2512: Energetics of galactose- and glucose-aromatic amino acid interactions: Implications for binding in galactose-specific proteins.

A. Bagno, G. Saielli, J. Phys. Org. Chem. A 2004, 17, 945-950: Calculation of NMR parameters in van der Waals complexes involving organic systems and xenon.

A. Fujii et al., J. Phys. Chem. A 2004, 108, 2652-2658: A molecular cluster study on activated CH/pi interactions: infrared spectroscopy of aromatic molecule-acetylene clusters.

G. L. Grunewald et al., J. Comput. Chem. 2004, 9, 315-326: Conformational preferences in alkylbenzenes and aryl-alkylamines: A comparative study using CAMSEQ, MM2 and molecular dynamics methods.

S. Grimme, Chem. Eur. J. 2004, 10, 3423-3429: On the importance of electron correlation effects for the pi-pi interactions in cyclophanes.

T. K. Manojkumar et al., J. Chem. Phys. 2004, 121, 841-846: p-benzoquinone-benzene clusters as potential nanomechanical devices: A theoretical study.

O. Takahashi et al., Eur. J. Org. Chem. 2004, 2398-2403: The conformation of alkyl benzyl alcohols studied by ab initio MO calculations. Comparison with IR and NMR spectral data. [See page 'Our papers' for Abstract]

M. Linares et al., J. Mol. Struct. (Theochem) 2004, 680, 169-180: Theoretical study of the intramolecular CH/pi interaction effect on rotation energy barriers in 1-pentene, 2,2'-diisopropyl biphenyl and some amino and nitro derivatives.

O. Takahashi et al., New J. Chem. 2004, 28, 355-360: Origin of the diastereofacial selectivity in the nucleophilic addition to chiral acyclic ketones. An ab initio MO study. [See page 'Our papers' for Abstract]

S. Re, S. Nagase, Chem. Commun. 2004, 658-659: How is the CH/pi interaction important for molecular recognition?

V. Kulsak et al., Chem.& Biol. 2003, 10, 331-340: Sexual Attraction in the Silkworm Moth: Nature of Binding of Bombykol in Pheromone Binding Protein - An Ab Initio Study.

O. Takahashi et al., Bull. Chem. Soc. Jpn. 2003, 76, 2167-2173: The conformation of 1-alkyl-2-phenylethylpropan-1-ols studied by ab Iinitio MO calculations. Relevance of the CH/pi and OH/pi hydrogen bonds. [See page 'Our papers' for Abstract]

C. Ramos et al., J. Phys. Chem. A 2003, 107, 10280-10287: The spectroscopic consequences of C-H/pi bonding: C6H6-(C4H2)n clusters with n = 1 and 2.

O.Takahashi et al., New J. Chem. 2003, 27, 1639-1643: The alkyl/phenyl-folded conformation of alkyl 1-phenylethyl sulphides and sulphones as evidenced by ab initio MO calculations. Implication to the 1,2-asymmetric induction. [See page 'Our papers' for Abstract]

R. Boese et al., Helv. Chim. Acta 2003, 86, 1085-1100: Cocrystallization with acetylene: The 1:1 complex wtih benzene: Crystal growth, X-ray diffraction and molecular similations.

S. S. Panja, T. Chakraborty, J. Chem. Phys. 2003, 118, 6200-6204: Conformational stability of allylbenzene: A combined study by dispersed fluorescence spectroscopy and quantum chemistry calculation.

O. Takahashi et al., Chem. Eur. J. 2003, 9, 756-762: Prevalence of the alkyl/phenyl-folded conformation in benzylic compounds, C6H5CH2-X-R (X = O, CH2, CO, S, SO, SO2): Significance of the CH/pi interaction as evidenced by high level ab Initio MO calculations. [See page 'Our papers' for Abstract]

O. Takahashi et al., Chem. Phys. Lett. 2003, 378, 509-515: Substituent effect of intermolecular CH/pi interaction as evidenced by ab initio molecular orbital calculations: C6H6-C2H3X (X = H, F, Cl, Br, and OH).

O. Takahashi et al., Bull. Chem. Soc. Jpn. 2003, 76, 369-374: General preference for alkyl/phenyl folded conformations. Relevance of the CH/pi and CH/O interactions to stereochemistry as evidenced by ab Initio MO calculations. [See page 'Our papers' for Abstract]

F. Ugozzoli et al., New J. Chem. 2002, 26, 1718-1723: CH/pi interaction between benzene and model neutral organic molecules bearing acid CH groups.

G. Ujaque et al., Chem. Eur. J. 2002, 8, 3423-3430: The origin of endo stereoselectivity in the hetero-Diels-Alder reactions of aldehydes with ortho-xylylenes: CH-pi, pi-pi, and steric effects on stereoselectivity.

J. Ribas et al., J. Org. Chem. 2002, 67, 7057-7065: Theoretical study of alkyl-pi and aryl-pi interactions. Reconciling theory and experiment.

S. Scheiner and S. J. Grabowski, J. Molec. Struct. 2002, 615, 209-218: Acetylene as potential hydrogen-bond proton acceptor.

K. Sundararajan et al., J. Molec. Struct. 2002, 613, 209-222: H-pi complexes of acetylene/benzene: A matrix isolation and computational study.

S. Tsuzuki et al., J. Phys. Chem. A 2002, 106, 4423-4428: The interaction of benzene with chloro- and fluoromethanes: Effects of halogenation on CH/pi interaction.S. Fomine et al., J. Phys. Chem. A 2002, 106, 3941-3946: Local MP2 studies of naphthalene, indole, and 2,3-benzofuran dimers.

A. Bagno et al., Chem., Eur. J. 2002, 8, 2047-2056: Through-space spin-spin coupling in van der Waals dimers and CH/pi interacting systems. An ab initio and DFT study.

K. Sundararajan et al., J. Phys. Chem. A, 2002, 106, 1504-1510: H-pi complexes of acetylene-ethylene: A matrix isolation and computational study.

O. Takahashi et al., Bull. Chem. Soc. Jpn. 2002, 75, 1777-1783: The conformation of 2-phenylpropionaldehyde and alkyl 1-phenylethyl ketones as evidenced by ab initio calculations. Relevance of the CH/pi and CH/O interactions in stereochemistry. [See page 'Our papers' for Abstract]

S. Tsuzuki et al., J. Am. Chem. Soc. 2002, 124, 102-112: Origin of attraction and directionality of the pi/pi interaction: Model chemistry calculations of benzene dimer interaction .

K. A. Atticks et al., Int. J. Quant. Chem. 2002, 90, 1440-1447: Structure and relative energies of the conformers of n-butyl cyanide and 5-hexynenitrile.

K. A. Atticks et al., Int. J. Quant. Chem. 2001, 85, 514-519: Three conformers observed and characterized in 1-hexyne.

M. P. M. Marques et al., J. Phys. Chem. A, 2001, 105, 5292-5297: Evidence of C-H/O hydrogen bonds in liquid 4-ethoxybenzaldehyde by NMR and vibrational spectroscopies.P. Tarakeshwar et al., J. Am. Chem. Soc. 2001, 123, 3323-3331: Olefinic vs aromatic pi-H interaction: A theoretical investigation of the nature of interaction of firstrow hydrides with ethene and benzene.

O. Takahashi et al., Bull. Chem. Soc. Jpn. 2001, 74, 2421-2430: Hydrogen-bond-like nature of the CH/pi interaction as evidenced by crystallographic database analyses and ab initio molecular orbital calculations. [See page 'Our papers' for Abstract]

M. Yamakawa et al., Angew. Chem., Intern. Ed. 2001, 40, 2818-2821: CH/pi attraction: The origin of enantioselectivity in transfer hydrogenation of aromatic carbonyl compounds catalyzed by chiral eta6-arene-ruthenium(II) complexes.

S. Tsuzuki et al., J. Chem. Soc., Perkin Trans. 2 2001, 1951-1955: Effects of CH/O and CH/pi interactions on the conformational preference of a crownophane core unit.

A. Bagno et al., Angew. Chem., Intern. Ed. 2001, 40, 2532-2534: DFT calculation of intermolecular nuclear spin-spin coupling in van der Waals dimers.

K.-S. Kim et al., Chem. Rev. 2000, 100, 4145-4185: Molecular clusters of pi-systems: Theoretical studies of structures, spectra, and origin of interaction energies. [REVIEW]

S. Tsuzuki et al., J. Am. Chem. Soc. 2000, 122, 3746-3753: The magnitude of the CH/pi interaction between benzene and some model hydrocarbons.

M. Oki et al., Bull. Chem. Soc. Jpn., 2000, 73, 2221-2230: Benzene-ethene interactions as studied by ab initio calculations.

M. J. Calhorda, Chem. Commun. 2000, 801-809: Weak hydrogen bonds: theoretical studies. [REVIEW]

M. Hirota et al., J. Phys. Org. Chem. 2000, 13, 620-623: Intramolecular CH/pi Interaction. Substituent effect as a probe for hydrogen bond-like character.

J. J. Novoa, F. Mota, Chem. Phys. Lett. 2000, 318, 345-354: The CH-pi bonds: strength, identification, and hydrogen-bonded nature: a theoretical study.

E. D. Jemmis et al., J. Mol. Struct. 2000, 556, 315-320: C-H pi interactions involving acetylene: an ab initio MO study.

O. Dmitrenko et al., J. Molec. Struct.: THEOCHEM 2000, 530, 85-96: Ab initio study of conformational stability in previtamin D, vitamin D and related model compounds.

S. Tsuzuki et al., J. Phys. Chem. A 1999, 103, 8265-8271: High-level ab initio calculations of interaction energies of C2H4-CH4 and C2H6-CH4 dimers: A model study of CH/pi interaction.

B. J. McNelis et al., J. Chem. Soc., Dalton Trans. 1999, 1831-1834: Design, synthesis and crystal structure of a copper dimetallocyclophane complex exhibiting unique rotational isomerism.

O. Dmitrenko et al., THEOCHEM 1999, 467, 195-210: Theoretical studies of the first strongly allowed singlet states of 3-desoxy analogs of previtamin D, vitamin D, and their E-isomers.

E. D. Jemmis et al., J. Mol. Struct. 1999, 510, 59-68: An ab initio and matrix isolation infrared study of the 1:1 C2H2-CHCl3 adduct.

P. Tarakaeshwar et al., J. Phys. Chem. B 1999, 103, 184-191: Ab initio study of benzene-BX3 (X = H, F, Cl) interactions.

U. Samanta et al., J. Phys. Chem. A 1998, 102, 8964-8969: Ab initio study of energetics of X-H/pi (X = N, O, and C) interactions involving a heteroaromatic ring.

I. Alkolta et al., Chem. Soc. Rev. 1998, 163-170: Non-conventional hydrogen bonds. [REVIEW]

D. Philp, J. M. A. Robinson, J. Chem. Soc., Perkin Trans. 2 1998, 1643-1650: A computation investigation of cooperativity in weakly hydrogen-bonded assemblies.

Y. Inoue et al., J. Phys. Chem. A 1998, 102, 646-648: A density functional study of the receptor-ligand interaction: Stabilization energy in ammonium salt-aromatic interactions.

M. Soduple et al., J. Am. Chem. Soc. 1997, 119, 4332-4238: A theoretical study of the endo/exo selectivity of the Diels-Alder reaction between cyclopropene and butadiene.

J. F. Malone et al., J. Chem. Soc., Faraday Trans. 1997, 93, 3429-3436: X-H/pi (phenyl) interactions. Theoretical and crystallographic observations.

I. Rozas et al., J. Phys. Chem. A 1997, 101, 9457-9463: Unusual hydrogen bonds: H/pi interactions.

M.-F. Fan et al., J. Chem. Soc., Perkin Trans. 2 1996, 563-568: Novel intermolecular CH-pi interactions - Ab initio and density-functional theory study.

J. A. Platts et al., Chem. Commun. 1996, 63-64: Quantum chemical evidence for CH/C hydrogen bonding.

P. I. Nagy et al., J. Chem. Phys. 1995, 102, 6812-6821: Ab-initio studies of the complexes of benzene with carbon-monooxide and formaldehyde.

B. W. Gung et al., J. Am. Chem. Soc. 1995, 117, 1783-1788: Conformational study of 1,5-hexadiene and 1,5-diene-3,4-diols.

E. M. Duffy et al., J. Am. Chem. Soc. 1993, 115, 9271-9275: Do denaturants interact with aromatic hydrocarbons in water? [Monte Carlo]

S. Sakaki et al., J. Chem. Soc., Faraday Trans. 1993, 89, 659-664: Structures and binding energies of benzene-methane and benzene-benzene complexes.

W. L. Jorgensen, D. L. Severance, J. Am. Chem. Soc. 1990, 112, 4768-4774: Aromatic-aromatic interactions: Free energy profiles for the benzene dimer in water, chloroform, and liquid benzene. [Monte Carlo]

T. Takagi et al., J. Chem. Soc., Perkin Trans. 2 1987, 1015-1018: Computational studies on CH/pi interactions.

K. Abe et al., Bull. Chem. Soc. Jpn. 1985, 58, 2713-2714: Preferred conformation of 1-phenyl-2-propanol. Ab initio and molecular mechanics calculations with geometry optimization.

J. Pawliszyn et al., J. Phys. Chem. 1984, 88, 1726-1730: Interactions between aromatic systems: Dimers of benzene and s-triazine.

G. Karlstrom et al., J. Am. Chem. Soc. 1983, 105, 3777-3782: Intermolecular potentials for the H2O-C6H6 and the C6H6-C6H6 systems calculated in an ab initio SCF CI approximation.

T. Aoyama et al., Chem. Phys. Lett. 1979, 67, 508-509: Ab initio Hartree-Fock calculation on acetylene dimer.

Y. Kodama et al., Tetrahedron Lett. 1977, 24, 2105-2108: Attractive interaction between aliphatic and aromatic systems. [CNDO2]