List of papers relating to the CH/π hydrogen bond

The author appreciates receiving information relating to this subject

Previous Category > Category list > Next Category

Category: CARBOHYDRATES, SUGAR-BINDING PROTEINS, CYCLODEXTRINS

[NEW] J. Houser, J. Koca et al., Chem. Eur. J. 2020, https://doi.org/10.1002/chem.202000593: The CH‐π interaction in protein – carbohydrate binding: Bioinformatics and in vitro quantification.

[NEW] Y, Yamaguchi, J. Uzawa, Advances in Chemistry Research, 2019, Chapter 1, 54, 1-17.: Mannose as a Component of Glycans: Structure, Dynamics and Interaction.

V. Spiwok, Molecules. 2017, 1038: doi: 10.3390/molecules22071038: CH/π Interactions in Carbohydrate Recognition.

J. Houser et al., PLoS One. 2017, 12 doi: 10.1371/journal.pone.0189375. eCollection 2017: Influence of Trp flipping on carbohydrate binding in lectins. An example on Aleuria aurantia lectin AAL.

L. Unione et al., Chem. Eur. J. 2017, 23, 3957–3965: Fluoroacetamide Moieties as NMR Spectroscopy Probes for the Molecular Recognition of GlcNAc-Containing Sugars: Modulation of the CH–π Stacking Interactions by Different Fluorination Patterns.

R. Ito et al., Org. Biomol. Chem. 2017, 15, 177-188: β-Amyrin synthase from Euphorbia tirucalli L. functional analyses of the highly conserved aromatic residues Phe413, Tyr259 and Trp257 disclose the importance of the appropriate steric bulk, and cation–π and CH–π interactions for the efficient catalytic action of the polyolefin cyclization cascade.

C-H Hsu et al., J. Am. Chem. Soc. 2016, 138, 7636–7648: The Dependence of Carbohydrate–Aromatic Interaction Strengths on the Structure of the Carbohydrate

K. L. Hudson et al., J. Am. Chem. Soc. 2015, 137, 15152–15160: Carbohydrate–Aromatic Interactions in Proteins.

E. Jiménez-Moreno et al., Chem. Sci. 2015, 6, 6076-6085: A thorough experimental study of CH/π interactions in water: quantitative structure–stability relationships for carbohydrate/aromatic complexes.

L. P. Calle et al., Chem. Eur. J. 2015, 21, 11408–11416: Monitoring Glycan–Protein Interactions by NMR Spectroscopic Analysis: A Simple Chemical Tag That Mimics Natural CH–π Interactions.

K. L. Hudson et al., J. Am. Chem. Soc. 2015, 137, 15152–15160: Carbohydrate–Aromatic Interactions in Proteins.

P. Li et al., Org. Lett. 2014, 16, 5064–5067: The CH/π Interactions of Methyl Ethers as a Model for Carbohydrate–N-Heteroarene Interactions.

C. Modenutti et al., Glycobiology 2014, doi: 10.1093/glycob/cwu102: Using Crystallographic Water Properties for the analysis and prediction of Lectin-Carbohydrate complex structures.

G. Santana et al., J. Am. Chem. Soc. 2013, 135, 3347–3350: A Dynamic Combinatorial Approach for the Analysis of Weak Carbohydrate/Aromatic Complexes: Dissecting Facial Selectivity in CH/π Stacking Interactions.

W. Chen et al., J. Am. Chem. Soc. 2013, 135, 9877–9884: Structural and Energetic Basis of Carbohydrate–Aromatic Packing Interactions in Proteins.

R. U. Kadam et al., ACS Chem. Biol. 2013, 8, 1925–1930: CH−π “T-Shape” Interaction with Histidine Explains Binding of Aromatic Galactosides to Pseudomonas aeruginosa Lectin LecA.

J. L. Asensio et al., Acc. Chem. Res. 2013, 46, 946–954: Carbohydrate–Aromatic Interactions.

W. Chen et al., J. Am. Chem. Soc. 2013, 135, 9877-9884: Structural and energetic basis of carbohydrate-aromatic packing interactions in proteins.

E. C. Stanca-Kaposka et al., J. Phys. Chem. B. 2013, 117, 8135-8142: Carbohydrate-aromatic interactions: vibrational spectroscopy and structural assignment of isolated monosaccharide complexes with p-hydroxy toluene and N-acetyl l-tyrosine methylamide.

M. Wimmerová et al., PLoS One. 2012, 7: e46032. doi: 10.1371/journal.pone.0046032: Stacking Interactions between Carbohydrate and Protein Quantified by Combination of Theoretical and Experimental Methods.

M. Kumari et al., Carbohydr. Res. 2012, 361, 133-140. doi: 10.1016/j.carres.2012.08.015: Exploration of CH···π mediated stacking interactions in saccharide: aromatic residue complexes through conformational sampling.

M. Kumari et al., Org. Biomol. Chem. 2012, 10, 4186-4100: Conformational mapping and energetics of saccharide?aromatic residue interactions: implications for the discrimination of anomers and epimers and in protein engineering.

M. Mazik, RSC Advances 2012, 2, 2630-2642: Recent developments in the molecular recognition of carbohydrates by artificial receptors.

C. Sonnenberg et al., Natural Product Comm. 2012, 7, 322-326: Molecular Recognition of Carbohydrates: Evaluation of the Binding Properties of Pyrazole-based receptoImidazole- and Indole-based Systems.

N. P. Barwell, A. P. Davis, J. Org. Chem. 2012, 76, 6548-6557: Substituent Effects in Synthetic Lectins - Exploring the Role of CH/pi Interactions in Carbohydrate Recognition.

V. Balaji et al., Mini-Rev. Org. Chem. 2011, 8, 222–228: Contribution of C-H···π interactions to the affinity and specificity of carbohydrate binding sites.

S. Kozmon et al., Phys. Chem. Chem. Phys. 2011, 13, 14215-14222: Dispersion interactions of carbohydrates with condensate aromatic moieties: Theoretical study on the CH–π interaction additive properties.

M. Kumari et al., Phys. Chem. Chem. Phys. 2011, 13, 6517-6530. doi: 10.1039/c0cp02559c: Quantification of binding affinities of essential sugars with a tryptophan analogue and the ubiquitous role of C-H···π interactions.

S. Kozmon et al., Chem. Eur. J. 2011, 17, 5680 – 5690: Three-Dimensional Potential Energy Surface of Selected Carbohydrates CH/π Dispersion Interactions Calculated by High-Level Quantum Mechanical Methods.

L. S. Birchall et al., Chem. Sci. 2011, 2, 1349–1355: Exploiting CH-π interactions in supramolecular hydrogels of aromatic carbohydrate amphiphiles.

S. Tsuzuki et al., J. Phys. Chem. A 2011, 115, 11256-11262: Magnitude and Nature of Carbohydrate-Aromatic Interactions in Fucose-Phenol and Fucose-Indole Complexes: CCSD(T) Level Interaction Energy Calculations.

M. Nishio, Phys. Chem. Chem. Phys., 2011, 13, 13873-13900. DOI: 10.1039/C1CP20404A: The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. [Review: PCCP Perspective, in themed issue‘Weak Hydrogen Bonds - Strong Effects]

R. K. Raju et al., Phys. Chem. Chem. Phys. 2010, 12, 7959–7967: The effects of perfluorination on carbohydrate-π interactions: computational studies of the interaction of benzene and hexafluorobenzene with fucose and cyclodextrin.

M. Mazik, C. Sonnenberg, J. Org. Chem. 2010, 75, 6416-6423: Isopropylamino and isobutylamino groups as recognition sites for carbohydrates: acyclic receptors with enhanced binding affinity toward beta-galactosides.

M. N. A. Mohamed et al., Carbohyd. Res. 2010, 345, 1741-1751: MP2, density functional theory, and molecular mechanical calculations of CH/p and hydrogen bond interactions in a cellulose-binding module-cellulose model system.

R. M. Kumar et al., J. Phys. Chem. A. 2010, 114, 4313-4324: Carbohydrate-Aromatic Interactions: The Role of Curvature on XH...pi Interactions.

A. Arda et al., Chem. Eur. J. 2010, 16, 414-418: A Chiral Pyrrolic Tripodal Receptor Enantioselectively Recognizes beta-Mannose and beta-Mannosides.

A. Arda et al., Eur. J. Org. Chem. 2010, 64-71: Selective Recognition of beta-Mannosides by Synthetic Tripodal Receptors: A 3D View of the Recognition Mode by NMR.

M. Mazik et al., Chem. Eur. J. 2009, 15, 9147-9159: Highly Effective Recognition of Carbohydrates by Phenanthroline-Based Receptors: a- versus b-Anomer Binding Preference.

M. Mazik, A. C. Buthe, Org. Biomol. Chem. 2009, 7, 2063-2071: Recognition properties of receptors based on dimesitylmethane-derived core: Di- vs. monosaccharide preference.

K. Ramirez-Gualito et al., J. Am. Chem. Soc. 2009, 131, 18129-18138: Enthalpic nature of the CH/pi interaction involved in the recognition of carbohydrates by aromatic compounds, confirmed by a novel interplay of NMR, calorimetry, and theoretical calculations.

D. B. Walker et al., Cell. Mol. Life Sci. 2009, 66, 3177-3191: Progress in biomimetic carbohydrate recognition. [Review]

Y. Ferrand et al., Angew. Chem. Int. Ed. 2009, 48, 1775-1779: A synthetic lectin for O-linked beta-N-acetylglucosamine.

S. Kubik, Angew. Chem. Int. Ed. 2009, 48, 1722 -1725: Synthetic Lectins . [Review]

M. Mazik, Chem. Soc. Rev. 2009, 38, 935-956: Molecular recognition of carbohydrates by acyclic receptors employing noncovalent interactions. [Review]

Z. Su et al., Chem. Phys. Lett. 2009, 471, 17-21: Carbohydrate-aromatic interactions: A computational and IR spectroscopic investigation of the complex, methyl alpha-l-fucopyranoside-toluene, isolated in the gas phase.

M. Maresca et al., Phys. Chem. Chem. Phys. 2008, 10, 2792–2800: Controlled aggregation of adenine by sugars: physicochemical studies, molecular modelling simulations of sugar-aromatic CH-π stacking interactions, and biological significance.

Z. R. Laughrey et al., J. Am. Chem. Soc. 2008, 130, 14625-14633: Carbohydrate-pi Interactions: What Are They Worth?

J. C. Morales et al., Chem. Eur. J. 2008, 14, 7828-7835: Experimental Measurement of Carbohydrate-Aromatic Stacking in Water by Using a Dangling-Ended DNA Model System.

R. K. Raju et al., Phys. Chem. Chem. Phys. 2008, 10, 6500-6508: Carbohydrate-protein recognition probed by density functional theory and ab initio calculations including dispersive interactions.

L. Bautista-Ibanez et al., J. Org. Chem. 2008. 73, 849-857: Calorimetric measurement of the CH/pi interaction involved in the molecular recognition of saccharides by aromatic compounds.

M. D. Diaz et al., Pure Appl. Chem. 2008, 80, 1827-1835: On the role of aromatic/sugar interactions in the molecular recognition of carbohydrates. A 3D view by using NMR.

M. Mazik, M. Kuschel, Chem. Eur. J. 2008 14, 2405-2419: Highly Effective Acyclic Carbohydrate Receptors Consisting of Aminopyridine, Imidazole, and Indole Recognition Units.

M. Mazik, A. C. Buthe, Org. Biomol. Chem. 2008, 6, 1558-1568: Highly effective receptors showing di- vs. monosaccharide preference.

M. Mazik, M. Kuschel, Eur. J. Org. Chem. 2008, 1517-1526: Amide, Amino, Hydroxy and Aminopyridine Groups as Building Blocks for Carbohydrate Receptors

E. C. Stanca-Kaposta et al., Phys. Chem. Chem. Phys. 2007, 9, 4444-4451: Carbohydrate molecular recognition: a spectroscopic investigation of carbohydrate-aromatic interactions.

M. Mazik, A, C. Buthe, J. Org. Chem. 2007, 72, 8319-8326: Oxime-Based Receptors for Mono- and Disaccharides.

M. Mazik, A. Konig, Eur. J. Org. Chem. 2007, 3271-3276: Mimicking the Binding Motifs Found in the Crystal Structures of Protein?Carbohydrate Complexes: An Aromatic Analogue of Serine or Threonine Side Chain Hydroxyl/Main Chain Amide.

S. E. Kiehna et al., Chem. Commun. 2007, 4026-4028: Evaluation of a Carbohydrate-pi Interaction in a Peptide Model System.

E. C. Stanca-Kaposta et al., Phys. Chem. Chem. Phys. 2007, 9, 4444-4451, DOI: 10.1039/b704792d: Carbohydrate molecular recognition: a spectroscopic investigation of carbohydrate/aromatic interactions.

M. Cacciarini et al., J. Org. Chem. 2007, 72, 3933-3936: A Tricatecholic Receptor for Carbohydrate Recognition: Synthesis and Binding Studies.

J. Screen et al., Angew. Chem. Int. Ed. 2007, 46, 3644-3648: IR-Spectral Signatures of Aromatic?Sugar Complexes: Probing Carbohydrate?Protein Interactions

G. Terraneo et al., J. Am. Chem. Soc. 2007, 129, 2890-2900: A Simple Model System for the Study of Carbohydrate/Aromatic Interactions.S. Yokota et al., Carbohydr. Res. 2007, 342, 2593-2598: Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface.

Y. Ferrand et al., Science 2007, 318, 619-621: A Synthetic Lectin Analog for Biomimetic Disaccharide Recognition.

T. Ueno et al., Carbohydr. Res. 2007, 342, 954-960: Conformational changes in single carboxymethylcellulose chains on a highly oriented pyrolytic graphite surface under different conditions.

M. S. Sujatha et al., J. Molec. Struct: THEOCHEM 2007, 814, 11-24: MP2/6-311++G(d,p) study on galactose-aromatic residue analog complexes in different position-orientations of the saccharide relative to aromatic residue.

R. M. Hughes, M. L. Waters, J. Am. Chem. Soc. 2006, 128, 13586-13591: Effects of Lysine Acylation in a beta-Hairpin Peptide: Comparison of an Amide-pi and a Cation-pi Interaction.

M. Mazik, A. Konig, J. Org. Chem. 2006, 71, 7854-7857: Recognition Properties of an Acyclic Biphenyl-Based Receptor toward Carbohydrates.

M. Mazik, H. Cavga, J. Org. Chem. 2006, 71, 2957-2963: Carboxylate-Based Receptors for the Recognition of Carbohydrates in Organic and Aqueous Media.

A. Kerzmann et al., J. Chem. Inf. Model. 2006, 46, 1635-1642: SLICK - Scoring and energy functions for protein - Carbohydrate interactions.

V. Spiwok et al., J. Computer-Aided Molec. Design 2006, 19, 887-901: Modelling of carbohydrate-aromatic interactions: ab initio energetics and force field performance.

V. Spiwok et al., J. Comput Aided Mol. Des. 2005, 19, 887-901: Modelling of carbohydrate-aromatic interactions: ab initio energetics and force field performance.

J. Flint et al., J. Biol. Chem. 2005, 280, 23718-23726: Probing the mechanism of ligand recognition in family 29 carbohydrate-binding modules.

C. D. Blundell et al., J. Biol. Chem. 2005, 280, 18189-18201: Towards a structure for a TSG-6 hyaluronan complex by modeling and NMR spectroscopy: insights into other members of the link module superfamily.

M. Mazik et al., J. Am. Chem. Soc. 2005, 127, 9045-9052: Molecular Recognition of Carbohydrates with Artificial Receptors: Mimicking the Binding Motifs Found in the Crystal Structures of Protein-Carbohydrate Complexes.

Y. Liu et al., Chem. Commun. 2005, 2211- 2213, DOI: 10.1039/b418220k: A unique tetramer of 4 5 -cyclodextrin/ferrocene in the solid state.

M. S. Sujatha et al., Biochemistry 2005, 44 , 8554 -8562: Insights into the role of the aromatic residue in galactose-binding sites: MP2/6-311G++** study on galactose- and glucose-aromatic residue analogue complexes.

M. Fernandez-Alonso et al., J. Am. Chem. Soc. 2005, 127, 7379-7386: Molecular recognition of saccharides by proteins. Insights on the origin of the carbohydrate-aromatic interactions.

A. Bernardi et al., Chem. Eur. J. 2005, 11, 4395-4406: Intramolecular carbohydrate-aromatic interactions and intermolecular van der Waals interactions enhance the molecular recognition ability of GM1 glycomimetics for cholera toxin.

V. Spiwok et al., Carbohydr. Res. 2004, 339, 2275-2280: Role of CH/π interactions in substrate binding by Escherichia coli beta-galactosidase.

C. D. Tatko, M. L. Waters, J. Am. Chem. Soc. 2004, 126, 2028-2034: Comparison of C-H/pi and Hydrophobic Interactions in a beta-Hairpin Peptide: Impact on Stability and Specificity.

V. Spiwok et al., Carbohydr. Res. 2004, 339, 2275-2280: Role of CH/pi interactions in substrate binding by Escherichia coli beta-galactosidase.

M. S. Sujatha et al., Protein Sci. 2004, 13, 2502-2512: Energetics of galactose- and glucose-aromatic amino acid interactions: Implications for binding in galactose-specific proteins.

M. S. Sujatha, P. V. Balaji, Proteins 2004, 55, 44-65: Identification of common structural features binding sites in galactose-specific proteins.

O. Srinivas et al., Carbohyd. Res. 2004, 339, 1087-1092: Crystal structure of N-(benzyloxycarbonyl)aminoethyl-2,3,4,6-tetra-O-benzoyl-mannopyranoside: stabilization of the crystal lattice by a tandem network of NH/O, CH/O, and CH/pi interactions.

N. Taieb et al., Advanced Drug Delivery Reviews 2004, 56, 779-794: Rafts and related glycosphingolipid-enriched microdomains in the intestinal epithelium: bacterial targets linked to nutrient absorption. [REVIEW]

B. Muktha et al., Carbohydr. Res. 2003, 338, 2005-2011: The crystal structure of 1,2,3,4,6-penta-O-benzoyl-alpha-D-mannopyranose: observation of CH-pi interaction as a surrogate to OH-O interaction of a free sugar.

O. Rusin et al., Chem. Eur. J. 2002, 8, 655-663:1,1-binaphthyl-substituted macrocycles as receptors for saccharide recognition.

M. Muraki, Protein and Peptide Lett. 2002, 9, 195-209: The importance of CH/pi interactions to the function of carbohydrate binding proteins. [REVIEW]

M. Muraki et al., Biochim. Biophys. Acta 2002, 1569, 10-20: Interactions of wheat-germ agglutinin with GlcNAcbeta1,6Gal sequence.

M. Muraki et al., Protein Eng. 2000, 13, 385-389: Chemically prepared hevein domains: effect of C-terminal truncation and the mutagenesis of aromatic residues on the affinity for chitin.

M. Muraki et al., Biochemistry 2000, 39, 292-299: Protein-carbohydrate interactions in human lysozyme probed by combining site-directed mutagenesis and affinity labeling.

M. Muraki et al., Acta Crystallogr., Sect. D 1998, 54, 834-843: X-ray structure of human lysozyme labeled with 2',3'-epoxy beta-glycoside of man-beta-1,4-GlcNAc-structural-change and recognition specificity at subsite-B.

M.Tsuzuki, T. Tsuchiya, Carbohyd. Res. 1998, 311, 11-24: Synthesis of a,a-, a,b-, and b,b-(dimaltoside)s of ethane-1,2-diol, propane-1,3-diol, and butane-1,4-diol: A proposal for an initial adhesion mode.

E. B. Starikov et al., Carbohydrate Res. 1998, 307, 343-346: Quantum chemical calculations on the weak polar host-guest interactions in crystalline cyclomaltoheptaose (beta-cyclodextrin)-but-2-yne1,4-diol heptahydrate.

K. Harata, M. Muraki, Acta Crystallogr., Sect. D 1997, 53, 650-657: X-ray structure of turkey-egg lysozyme complex with tri-N-acetylchitotriose. Lack of binding ability at subsite A.

T. Steiner, W. Saenger, J. Chem. Soc., Chem. Commun. 1995, 2087-2088: Weak polar host-guest interactions stabilizing a molecular cluster in a cyclodextrin cavity: CH-O and CH-pi contacts in beta-cyclodextrin-but-2-yne-1,4-diol heptahydrate.

T. Steiner, K. Gessler, Carbohydrate Res. 1994, 260, 27-38: Aromatic molecules included into and contacting the outer surface of cyclomaltohexaose (alpha-cyclodextrin): Crystal structure of alpha-cyclodextrin-(benzyl alcohol)2-hexahydrate.

K. Harata, J. Chem. Soc., Chem. Commun. 1993, 546-547: The X-ray structure of an inclusion complex of heptakis(2,6-di-O-methyl)-beta-cyclodextrin with 2-naphthoic acid.

K. Harata, J. Inclusion Phenom. 1992, 13, 77-86: Complex formation of hexakis(2,6-di-O-methyl)-alpha-cyclodextrin with substituted benzenes an aqueous solution.

K. Harata et al., Bull. Chem. Soc. Jpn. 1983, 56, 1732-1736: The structure of the cyclodextrin complex. XVI. Crystal structure of heptakis(2,3,6-tri-O-methyl)-cyclodextrin-p-iodophenol (1:1) complex tetrahydrate.

K. Harata, Bull. Chem. Soc. Jpn. 1982, 55, 1367-1371: The structure of the cyclodextrin complex. XII. Crystal structure of alpha-cyclodextrin-1-phenylethanol (1:1) tetrahydrate.