List of papers relating to the CH/π hydrogen bond

The author appreciates receiving information relating to this subject

Previous Category > Category list > Next Category

Category: ELECTRONIC SUBSTITUENT EFFECT

[NEW] C. Zhao et al., Org. Lett. 2014, 16, 3520-3523: Experimental Study of the Cooperativity of CH/π Interactions.

N. J. Zondlo, Acc. Chem. Res. 2013, 46, 1039-1049: Aromatic CH-Proline Interactions: Electronically Tunable CH/pi Interactions.

G.Santoni et al., Chem. Eur. J. 2010, 16, 645-654: Stereoselective Control by Face-to-Face Versus Edge-to-Face Aromatic Interactions: The Case of C3-TiIV Amino Trialkolate Sulfoxidation Catalysts.

P. Melsa et al., J. Org. Chem. 2008, 73, 3032-3039: Substituent effect on exo stereoselectivity in the 1,3-dipolar cycloaddition reaction of tulipalin A with nitrile ylides.

E.-C. Lee et al., J. Am. Chem. Soc. 2005, 127, 4530-4537: Substituent effects on the edge-to-face aromatic interactions.

A. Fujii et al., J. Phys. Chem. A 2004, 108, 2652-2658: A molecular cluster study on activated CH/pi interactions: infrared spectroscopy of aromatic molecule-acetylene clusters.

F. Ugozzoli et al., New J. Chem. 2002, 26, 1718-1723: CH/pi interaction between benzene and model neutral organic molecules bearing acid CH groups.

M. Yamakawa et al., Angew. Chem., Intern. Ed. 2001, 40, 2818-2821: CH/pi attraction: The origin of enantioselectivity in transfer hydrogenation of aromatic carbonyl compounds catalyzed by chiral eta6-arene-ruthenium(II) complexes.

K. Kinbara et al., Tetrahedron 2000, 56, 6651-6655: Effect of a substituent on an aromatic group in diastereomeric resolution.

M. Hirota et al., J. Phys. Org. Chem. 2000, 13, 620-623: Intramlecular CH/pi interaction. Substituent effect as a probe for hydrogen-bond-like character.

H. Suezawa et al., J. Chem. Soc., Perkin Trans. 2 2000, 1243-1249: Electronic substituent effect on intramolecular CH/pi interaction as evidenced by NOE experiments. [See page 'Our papers' for Abstract]

A. Burchardt et al., Main Group Metal Chem. 1999, 22, 301-309: Isomerie und CH-pi-Wechsaelwirkungen bei zwei Antimon(V)-Komplexen mit Phenyl-Benzylphosphonato-Brucken.

E.-I. Kim et al., J. Am. Chem. Soc. 1998, 120, 11192-11193: Measurements of molecular electrostatic field effects in edge-to-face aromatic interactions and CH-pi interactions with implications for protein folding and molecular recognition.

F. J. Carver et al., Chem. Commun. 1998, 775-776: Structure-activity relationship for quantifying aromatic interactions.

N. N. L. Madhavi et al., Chem. Commun. 1997, 1953-1954: Evidence for the characterization of the CH/pi interaction as a weak hydrogen bond: toluene and chlorobenzene solvates of 2,3,7,8-tetraphenyl-1,9,10-anthridine.

K. Kishikawa et al., J. Chem. Soc., Perkin Trans. 1 1997, 1233-1239: Control of the rotational barrier and spatial disposition of the N-(2'-methylphenyl) group in succinimides by substituent and solvent effects.

A. Mori et al., Chem. Lett. 1997, 509-510: New troponoid liquid crystalline compounds, 5-alkoxy-2-(4-alkoxybenzoylamino)troponons.

D. R. Boyd et al., Chem. Commun. 1996, 2269-2270: Edge-to-face aromatic interaction in alkenes, nitrones and imines.

H. Adams et al., Angew. Chem., Intern. Ed. 1996, 1542-1544: Chemical double-mutant cycles for the measurement of weak intermolecular interactions: Edge-to-face aromatic interactions.

C. Wolf et al., Liebigs Ann. 1996, 357-363: Influence of substituents on the rotational energy barrier of axially chiral biphenyls. 2.

H. Sugimoto et al., J. Chem. Soc., Chem. Commun. 1995, 1411-1412: Unusual conformational stability of a sterically crowded atropisomer of methyl[alpha-5,20,15,20-tetrakis(2'-phenylpheny)porphyrinato]aluminium: A possibility of CH-pi bonding interactions in organometallic porphyrin systems.

S. Paliwal et al., J. Am. Chem. Soc. 1994, 116, 4497-4498: Molecular torsion balance for weak molecular recognition forces. Effects of "tilted-T" edge-to-face aromatic interactions on conformational selection and solid-state structure.

S. K. Chowdhury et al., Organometallics 1994, 13, 4092-4096: Conformational preferences in molybdenum(II) pi-allyl complexes: Role of CH/pi interaction.

M. C. Grossel et al., J. Org. Chem. 1993, 58, 6654-6661: Conformational studies of dihydrotetraphenylmethanes. 2. X-ray crystallographic and solution H NMR studies of cis-1,4-dihydro-4-tritylbiphenyl and its 4'-bromo derivative: Conformational control by and intramolecular edge-to-phase aromatic interaction.

R. Ehama et al., Bull. Chem. Soc. Jpn. 1993, 66, 814-818: Substituent effect on the enthalpies of formation of CH-pi complexes of aromatic pi-bases.

H. Suezawa et al., J. Phys. Org. Chem. 1993, 6, 399-406: Evidence for the presence of CH-pi interacted ap-conformers of benzyl formates.

M. Oki, Acc. Chem. Res. 1990, 23, 351-356: 1,9-Disubstituted triptycenes: An excellent probe for weak molecular interactions.

Y. Nakai et al., Bull. Chem. Soc. Jpn. 1989, 62, 2923-2931: Implications of unusual population ratios in rotational isomers of 9-(4-substituted benzyl)-8-13-dichloro-1,4-dimethyltriptycenes and 4-substituted 9-benzyl-8,13-dichloro-1-methyltriptycenes: CH3-pi hydrogen bond.

Y. Nakai et al., Chem. Lett. 1987, 16, 89-92: Substituent effects on the populations of rotational isomers in 9-benzyl-8-13-dichloro-methyltriptycenes. Evidence for the presence of CH3-pi interactions.

M. Karatsu et al., Bull. Chem. Soc. Jpn. 1986, 59, 3529-3534: Infrared C-D stretching and 2H NMR spectra of isopropyl-2-d 1-(p-substituted phenyl)ethyl ketones. Evidence for the hydrogen bond-like interaction between C-D group and aromatic pi-electrons.

N. Nakagawa, Nippon Kagaku Zasshi 1961, 82, 141-147: Solvent shifts in NMR spectra of organic compounds. I. The solvation shift. (in Japanese)

See also H.-D. Hornung et al., Main Group Metal Chem. 1997, 20, 157-167; M. Nakamura et al., Bull. Chem. Soc. Jpn. 1985, 58, 3377-3378; J. Capillon, J. P. Guette, Tetrahedron 1979, 35, 1817-1820.