List of papers relating to the CH/π hydrogen bond

The author appreciates receiving information relating to this subject

Previous Category > Category list > Next Category

Category: ENANTIOSELECTIVE REACTION

[NEW] M. Annunziata et al., Cryst. Growth Des. 2014, 14, 11, 5442–5451, DOI: 10.1021/cg5006117: Structural Motifs in Enantiopure Halogenated Aryl Benzyl Sulfoxides: Effect of Fluorine Substitution.

[NEW] D. Carmona et al., Organometallics 2014, 33, 443−|446: Metal−Nitroalkene and aci-Nitro Intermediates in Catalytic Enantioselective Friedel−Crafts Reactions of Indoles with trans-β- Nitrostyrenes.

[NEW] D. Carmona et al., J. Mol. Catalysis A: Chemical 2014, 385, 119–124: Enantioselective catalysts based on the chiral fragment (η5-C5Me5)Ir(Prophos) for Diels–Alder reactions.

[NEW] H. Brunner, T. Tsuno et al., Organometallics 2014, 33, 2257–2265: Control of the Conformation of M–Prophos Chelate Rings by CH/π Interactions.

D. Carmona et al., Organometallics 2013, 32, 1609−|1619: Chiral Octahedral Phosphano−Oxazoline Iridium(III) Complexes as Catalysts in Asymmetric Cycloaddition Reactions.

T. Ema et al, Org. Biomol. Chem. 2012, 10, 6299-6308: Redesign of enzyme for improving catalytic activity and enantioselectivity toward poor substrates: manipulation of the transition state.

P. Rönnholm et al., Org. Biomol. Chem. 2012, 10, 2807-2814: A computational study of the enantioselective addition of n-BuLi to benzaldehyde in the presence of a chiral lithium N,P amide.

D. Carmona et al., Organometallics 2012, 31, 4551−4557: Enantioselective Catalytic Diels−Alder Reactions with Enones As Dienophiles.

S. E. Allen et al., J. Am. Chem. Soc. 2012, DOI: 10.1021/ja302761d: Oxyanion-steering and CH-pi Interactions as Key Elements in an N-Heterocyclic Carbene-Catalyzed [4+2] Cycloaddition.

C. Cardellicchio et al., CrystEngComm. 2012, 14, 3972-3981: An Investigation on the Weak Interactions Assembling the Crystal Structures of Betti Bases.

D. Carmona et al., Organometallics 2011, 30, 6661−6673: Enantioselective Catalysts for the Diels−Alder Reaction between Methacrolein and Cyclopentadiene Based on the Chiral Fragment (η5-C5Me5)M(chiral diphosphane) (M = Rh, Ir).

D. Carmona et al., Organometallics 2011, 30, 6726-6733: Enantioselective Diels-Alder Reactions Catalyzed by Well-Defined Arene-Ruthenium Complexes. Relationship between Catalyst Structure and Enantioselectivity.

M. A. M. Capozzi et al., Eur. J. Org. Chem. 2011, 4327-4334: A Study of Factors Affecting Enantioselectivity in the Oxidation of Aryl Benzyl Sulfides in the Presence of Chiral Titanium Catalysts.

M. B. Schmid et al., Chem. Sci. 2011, 2, 1793-1803: Distinct conformational preferences of prolinol and prolinol ether enamines in solution revealed by NMR.

G. K. Ingle et al., Org. Lett. 2011, 13, 2054-2057: Chiral Magnesium BINOL Phosphate-Catalyzed Phosphination of Imines: Access to Enantioenriched alpha-Amino Phosphine Oxides.

A. Yoshida et al., Org. Lett. 2011, 13, 2460-2463: Copper-Catalyzed Enantioselective Propargylic Amination of Nonaromatic Propargylic Esters with Amines.

Y. Sasaki et al., Chem. Lett. 2011, 40, 1044-1046: Mechanistic Insight into the Anomalous syn-Selectivity Observed during the Addition of Allenylboronates to Aromatic Aldehydes.

E. H. Krenske, Org. Lett. 2011, 13, 6572-6575: Origins of Aryl Substituent Effects on the Stereoselectivities of Additions of Silyl Enol Ethers to a Chiral Oxazolinium Ion.

E. H. Krenske, Chem. Sci. 2010, 1, 387-392: Stereoselectivity in oxyallyl-furan (4 + 3) cycloadditions: control of intermediate conformations and dispersive stabilisation in cycloadditions involving oxazolidinone auxiliaries.

T. Ema et al, Chem. Commun. 2010, 46, 5440–5442: Rational creation of mutant enzyme showing remarkable enhancement of catalytic activity and enantioselectivity toward poor substrates.

G. Hu et al., J. Am. Chem. Soc. 2010, 132, 14669-14675: Substrate-Induced Covalent Assembly of a Chemzyme and Crystallographic Characterization of a Chemzyme-Substrate Complex.

K. Kanao et al., rganometallics 2010, 29, 2381-2384: Intramolecular Edge-to-Face Aromatic pi-pi Interaction in Optically Active Ruthenium-Allenylidene Complexes for Enantioselective Propargylic Substitution Reactions.

F. Naso et al., Chem. Eur. J. 2009, 15, 13417-13426: A Combined Theoretical and Experimental Investigation on the Enantioselective Oxidation of Aryl Benzyl Sulfides in the Presence of a Chiral Titanium Catalyst.

N. Ribeiro et al., Chirality 2009, DOI 10.1002/chir.20702: Enantiopure cyclic O-substituted phenylphosphonothioic acid: Synthesis and chirality-recognition ability.

R. Carrillo et al., Angew. Chem. Int. Ed. 2009, 48, 7803-7808: Quantification of a CH-pi Interaction Responsible for Chiral Discrimination and Evaluation of Its Contribution to Enantioselectivity.

O. Gutierrez et al., Org. Lett. 2009, 11, 4298-4301: Origin of Stereoselectivity in the Imidazolidinone-Catalyzed Reductions of Cyclic alpha,beta-Unsaturated Ketones.

C. D. Anderson et al., Org. Lett. 2008; 10, 2749-2752: Origin of Enantioselection in Hetero-Diels-Alder Reactions Catalyzed by Naphthyl-TADDOL.

D. Sanhes et al., Tetrahedron Lett. 2008, 49, 6720-6723. doi:10.1016/j.tetlet.2008.09.083: Stereo-specific synthesis of hydroanthracene-dicarboximides.

A. L. Gott et al., Organometallics, 2007, 26, 136-142. DOI: 10.1021/om0607649: Chiral Alkoxide-Functionalized Guanidinates from Ring-Opening Rearrangement of Aminooxazolinate Complexes.

R. Gordillo, K. N. Houk, J. Am. Chem. Soc. 2006, 128, 3543-3553: Origins of stereoselectivity in Diels-Alder cycloadditions catalyzed by chiral imidazolidinones.

D. Carmona et al., J. Am. Chem. Soc. 2005, 127, 13386-13398. DOI: 10.1021/ja0539443: Enantioselective 1,3-Dipolar Cycloaddition of Nitrones to Methacrolein Catalyzed by (h5-C5Me5)M{(R)-Prophos} Containing Complexes (M = Rh, Ir; (R)-Prophos = 1,2-bis(Diphenylphosphino)propane): On the Origin of the Enantioselectivity.

A. Johansson, M. Hakansson, Chem. Eur. J. 2005, 11, 5238-5248: Absolute asymmetric synthesis of stereochemically labile aldehyde helicates and subsequent chirality transfer reactions.

A. Lennartson et al., Chem. Eur. J. 2005, 11, 1757-1762: Resolution of seven-coordinate complexes.

G. Drudis-Sole et al., Chem. Eur. J. 2005, 11, 1017-1029: A QM/MM study of the asymmetric dihydroxylation of terminal aliphatic n-alkenes with OsO4(DHQD)2PYDZ: Enantioselectivity as a function of chain length.

K. Ito et al., Tetrahedron Lett. 2004, 45, 7277-7281: Palladium-catalyzed asymmetric tandem allylic substitution using chiral 2-(phosphinophenyl)pyridine ligand.

K. Matsumoto et al., Tetrahedron Lett. 2004, 45, 2385-2388: Construction of a new asymmetric reaction site: asymmetric 1,4-addition of thiol using pentagonal bipiramidal Hf(salen) complex as catalyst.

K. M. Gillepsie et al., J. Org. Chem. 2002, 67, 3450-3458: Enantioselective aziridination using copper complexes of biaryl Schiff bases.

Y.-B. Zhou et al., Tetrahedron: Asymmetry 2002, 13, 469-473: Chiral 1,2,3,4-tetrahydroquinolinyl-oxazoline ligands for Ru-catalyzed asymmetric transfer hydrogenation of ketones.

R. Noyori et al., J. Org. Chem., 2001, 66, 7931-7944: Metal-ligand bifunctional catalysis: A nonclassical mechanism for asymmetric hydrogen transfer between alcohols and carbonyl compounds.

M. Yamakawa et al., Angew. Chem., Intern. Ed. 2001, 40, 2818-2821: CH/pi attraction: The origin of enantioselectivity in transfer hydrogenation of aromatic carbonyl compounds catalyzed by chiral eta6-arene-ruthenium(II) complexes.

C. J. Sanders et al., J. Am. Chem. Soc. 2000, 122, 7132-7133: Structural origins of a dramatic variation in catalyst efficiency in enantioselective alkene aziridination: Implications for design of ligands based on chiral biaryldiamines.C. G. Arena et al., J. Chem. Soc., Dalton Trans. 2000, 3149-3157: (eta(6)-arene)ruthenium(II) complexes containing enantiomerically pure (beta-aminoalkyl)phosphines or a (beta-aminoalkyl) phosphinite: synthesis, stereochemical and kinetic studies.

M. Yamakawa et al., J. Am. Chem. Soc. 2000, 122, 1466-1478: The metal-ligand bifunctional catalysis: A theoretical study on the ruthenium(II)-catalyzed hydrogen transfer between alcohols and carbonyl compounds.

T. Hashihayata et al., Tetrahedron 1999, 55, 14599-14610: Conformational analysis of cationic (R,S)- and (R,R)-(salen)mangaese complexes possessing axial chirality as a chiral element based on X-ray crystallography: An explanation of the effect of apical ligand on enantioselection by (salen)manganese catalyst.

H. Brunner, Angew. Chem. Int. Ed. Engl. 1999, 38, 1194-1208: Optically active organometallic compounds of transition elements with chiral metal atoms.

S. Ueji et al., Biotechnol. Lett. 1999, 21, 865-868: Lipase-catalyzed esterification of 2-(4-substituted phenoxy)propionic acids in organic solvent: substituent effect controlling enantioselectivity toward racemic acids.

R. W. Quan et al., J. Am. Chem. Soc. 1996, 118, 8156-8157: Enantiofacially selective binding of prochiral olefins to a chiral catalyst via simultaneous face-face and edge-edge aromatic interactions.

T. Kawabata et al., Tetrahedron Lett. 1996, 37, 4153-4156: Chiral recognition of amino acid derivatives by 1,1'-binaphthalene-8,8'-diol.

H. Becker et al., Tetrahedron Lett. 1994, 7315-7318: Comparing two models for the selectivity in the asymmetric dihydroxylation reaction (AD).

H. Brunner, Angew. Chem. Int. Ed. Engl. 1983, 22, 987-1012: Rhodium catalysts for enantioselective hydrosilylation - A new concept in the development of asymmetric catalysts [REVIEW].

Y. Yokowo et al., Nippon Kagaku Kaishi 1981, 1904-1910: Optical activation of some chiral aldehydes via 1-methylpiperazine enamines. (in Japanese)

M. Cherest, N. Prudent, Tetrahedron 1980, 36, 1599-1606: Influence des interactions de torsion dans la reduction des cetones par les hydrure. Interpretation generale du deroulment sterique de la reduction des cetones acycliques et de l'addition des organomagnesiens sur les aldehydes acycliques.

H. Brunner, D. K. Rastogi, Inorg. Chem. 1980, 19, 891-895: Optically active transition-metal complexes. 65. Conformational analysis in diastereoisomer equilibria of square-pyramidal dicarbonylcyclopentadienylmolybdenum-pyridine-2-carbaldimine complexes using the Ruch/Ugi rules.

H. Brunner, Angew. Chem. Int. Ed. Engl. 1980, 19, 641-642: Conformational analysis of 1-phenylethyl substituents in metal complexes and their importance for asymmetric catalysis.

J. Capillon, J. P. Guette, Tetrahedron 1979, 35, 1817-1820: Effets electroniques en stereochimie-III. Reduction asymetrique de phenylalkylcetones diversement substituees par des organomagnesiens aromatiques chiraux.

H. Brunner, Z. Naturforsch. Eur. J. Inorganic Chemistry 1979, 112, 7, 2539-2551: Optisch aktive Ubergangsmetall-Komplexe, LXIII [1] Asymmetrische Induktion in C5H5Mo(CO)2LX Diastereoisomeren-Gleichgewichten.